## RHEUMATOLOGY

# Original article

## The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies

Frances Rees<sup>1,2</sup>, Michael Doherty<sup>1</sup>, Matthew J. Grainge<sup>3</sup>, Peter Lanyon<sup>1,2</sup> and Weiya Zhang<sup>1</sup>

## Abstract

**Objectives.** The aim was to review the worldwide incidence and prevalence of SLE and variation with age, sex, ethnicity and time.

**Methods.** A systematic search of MEDLINE and EMBASE search engines was carried out using Medical Subject Headings and keyword search terms for Systemic Lupus Erythematosus combined with incidence, prevalence and epidemiology in August 2013 and updated in September 2016. Author, journal, year of publication, country, region, case-finding method, study period, number of incident or prevalent cases, incidence (per 100 000 person-years) or prevalence (per 100 000 persons) and age, sex or ethnic group-specific incidence or prevalence were collected.

**Results.** The highest estimates of incidence and prevalence of SLE were in North America [23.2/100 000 person-years (95% CI: 23.4, 24.0) and 241/100 000 people (95% CI: 130, 352), respectively]. The lowest incidences of SLE were reported in Africa and Ukraine (0.3/100 000 person-years), and the lowest prevalence was in Northern Australia (0 cases in a sample of 847 people). Women were more frequently affected than men for every age and ethnic group. Incidence peaked in middle adulthood and occurred later for men. People of Black ethnicity had the highest incidence and prevalence of SLE, whereas those with White ethnicity had the lowest incidence and prevalence. There appeared to be an increasing trend of SLE prevalence with time.

**Conclusion.** There are worldwide differences in the incidence and prevalence of SLE that vary with sex, age, ethnicity and time. Further study of genetic and environmental risk factors may explain the reasons for these differences. More epidemiological studies in Africa are warranted.

Key words: incidence, prevalence, epidemiology, systemic lupus erythematosus, systematic review

#### Rheumatology key messages

- There is wide geographical variation in the reported incidence and prevalence of SLE.
- Males with SLE have an older peak age of incidence and prevalence compared with females.
- There appears to be a trend of increasing prevalence of SLE with time.

Submitted 5 January 2017; revised version accepted 6 June 2017

Correspondence to: Frances Rees, Academic Rheumatology, The University of Nottingham, Room A27, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK. E-mail: frees@doctors.org.uk

## Introduction

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease with a varying clinical phenotype. It is known to affect women more frequently than men, with a ratio of approximately six women to every one man [1]. The aetiology of SLE is not fully understood, but both genetic predisposition and environmental triggers are believed to be involved [2]. Studying the epidemiology of SLE allows us to identify and explore changes in potential risk factors for the disease and allows planning of health services in response to overall disease burden [3]. A review of the incidence and prevalence of SLE was last published in 2006 by Danchenko *et al.* [4] and found marked disparities in incidence and prevalence worldwide. This was attributed to both true geographical variation and variation in study design. It could be a result of differences in the age and ethnic mix between populations, the definition of SLE used or, as found in some studies in the same population, a change in the incidence and prevalence of SLE with time [1, 5–7]. The aim of this study was to review the current literature published on the incidence and prevalence of SLE throughout the world.

## **Methods**

A systematic literature review was undertaken. The search strategy used both Medical Subject Headings (MeSH) and keyword search terms for Systemic Lupus Erythematosus combined with MeSH and keyword terms for incidence and epidemiology, followed by prevalence and epidemiology (see supplementary Table S1, available at Rheumatology Online, for search strategy). The databases searched were Ovid MEDLINE from 1946 to August 2013 and EMBASE from 1974 to August 2013. All articles were downloaded into Endnote software and were selected on the basis of title and then abstract for full review. Hand-searching of citations also occurred. Articles were included if they were written in English or French language and were regarding humans. Exclusion criteria were review articles, conference proceedings, abstracts or editorials, articles in press, articles involving drug-induced lupus or neonatal lupus, and those solely regarding paediatric patients or a subtype of SLE, such as LN or discoid lupus. Searches were updated in September 2016. Table 1 shows the number of articles retrieved from each database in August 2013 and the additional articles added in September 2016.

Information on author, journal, year of publication, country, region, case-finding method, study period, number of incident or prevalent cases, incidence (per 100 000 personyears) or prevalence (per 100 000 persons) was collected by F.R. In addition, any age, sex or ethnic group-specific incidence or prevalence rates reported were collected. Age-adjusted or standardized results were presented whenever available. PRISMA guidelines were used.

### Results

#### Incidence

#### Geography

Table 2 and Fig. 1A summarize the reported worldwide incidence estimates of SLE. Figure 1A uses the most recent estimates from Table 2. There was worldwide variation, with the highest incidence reported in North America (23.2/100 000 person-years, 95% CI: 22.4, 24.0) [8] and the lowest incidences reported in Africa (0.3/100 000 person-years) [9] and Ukraine (0.3/100 000 person-years, 95% CI: 0.0, 1.5) [10]. In general, European countries had a lower incidence of SLE, whereas Asia, Australasia and the Americas had a higher incidence. The most frequent methods for case-finding were local secondary care hospital-based outpatient lists or discharge registries, or National Health Insurance databases.

#### Age and sex

In all studies reviewed, females had a higher incidence of SLE compared with males. The sex ratio ranged from 2:1 [36] to 15:1 [46]. As an example, Somers *et al.* [31] estimated the UK incidence to be 7.89/100 000 person-years (95% CI: 7.46, 8.31) for females compared with 1.53/ 100 000 person-years (95% CI: 1.34, 1.71) for males. This higher incidence in females remained true for every age group, although the ratios were smaller at both extremes of age.

In the majority of studies, there was a peak age of incidence before declining. In females, the peak age ranged from the third to seventh decades of life. For males, the peak incidence was usually later, in the fifth to seventh decades. Three selected studies taken from three different geographical regions demonstrate this in Fig. 2A.

#### Ethnicity

In studies that reported differences between ethnic groups [1, 8, 21, 29, 33, 35, 37, 41, 42, 58, 59], incidence rates

| Ō                                                                      |
|------------------------------------------------------------------------|
| Ð                                                                      |
| R                                                                      |
| Ĕ                                                                      |
| 0                                                                      |
| 2                                                                      |
| 5                                                                      |
|                                                                        |
| 2                                                                      |
| 4                                                                      |
| Ú                                                                      |
| T                                                                      |
| R                                                                      |
| č                                                                      |
| Ξ                                                                      |
| 5                                                                      |
| ž                                                                      |
| $\underline{\circ}$                                                    |
| 0                                                                      |
| 9                                                                      |
| 1                                                                      |
| B                                                                      |
| 4                                                                      |
| <u>0</u>                                                               |
| Φ                                                                      |
| G                                                                      |
| ō,                                                                     |
| 1                                                                      |
| _                                                                      |
|                                                                        |
| C                                                                      |
| 4                                                                      |
| S                                                                      |
| 4                                                                      |
| Ċ                                                                      |
|                                                                        |
| g                                                                      |
| 9                                                                      |
| C.                                                                     |
| ~                                                                      |
| Š                                                                      |
| $\overline{0}$                                                         |
| Å                                                                      |
| ē                                                                      |
| Ű,                                                                     |
|                                                                        |
| 2                                                                      |
| demic.oup.com/rheumatology/article/56/11/1945/4079913 by guest on 18 / |
| 2                                                                      |
| 00                                                                     |
| 1                                                                      |

April 2022

Downloaded from https://aca

|         | -       |               |        |
|---------|---------|---------------|--------|
| TABLE 1 | Summary | of literature | search |

| Search term | Database          | Number of art-<br>icles retrieved | Number of<br>articles after<br>removing<br>duplicates | Number of art-<br>icles selected<br>for review on<br>the basis of<br>title and<br>abstract | Number of art-<br>icles selected<br>for inclusion<br>after reading<br>the full text art-<br>icle, including<br>additional art-<br>icles found by<br>hand searching | selected on<br>updated search<br>in September |
|-------------|-------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Incidence   | Medline<br>Embase | 542<br>1175                       | 1617                                                  | 76                                                                                         | 46                                                                                                                                                                 | 11                                            |
| Prevalence  | Medline<br>Embase | 929<br>2290                       | 2744                                                  | 92                                                                                         | 76                                                                                                                                                                 | 14                                            |

| Continent     | Country | References                         | Region               | Case-finding method                     | Number of<br>incident cases | Incidence per 100 000<br>person-years (95% Cl)<br>[study year]          |
|---------------|---------|------------------------------------|----------------------|-----------------------------------------|-----------------------------|-------------------------------------------------------------------------|
| Europe        | Denmark | Voss et al. [5]                    | Funen                | Hospital and community records          | 127                         | 1.0 (0.3, 2.9) <sup>a</sup> [1980]<br>3 6 /2 0 6 11 <sup>a</sup> [1994] |
|               |         | laustrun <i>at al</i> [11]         | Finen                | Hospital and community records          | 35                          |                                                                         |
|               |         | Hermansen <i>et al</i> [12]        | National             | National nationt registry               | 1644                        | 235 (2 24 2 49)                                                         |
|               | France  | Amalid of a/ [13]                  | National             | National health insurance database      | 1031                        | 3 30                                                                    |
|               | Lialood |                                    |                      | Handran Hoalth Hisaranoo database       | 1001                        |                                                                         |
|               | FINIANO | Elfving <i>et al.</i> [14]         | Northern Savo        | Hospital and community records          |                             | 3.6 (3.0, 4.2)                                                          |
|               | Greece  |                                    | North-west           | Hospital records                        | 178                         | $1.9 (1.5, 2.3)^{d}$                                                    |
|               | Iceland | Gudmundsson <i>et al.</i> [16]     | National             | Hospital registers                      | 76                          | 3.3                                                                     |
|               | Italy   | Govoni <i>et al.</i> [17]          | Ferrara              | Hospital records                        | 2000: 7                     | 2.0                                                                     |
|               |         |                                    |                      |                                         | 2001: 4                     | 1.2                                                                     |
|               |         |                                    |                      |                                         | 2002: 9                     | 2.6                                                                     |
|               |         | Tsioni <i>et al.</i> [18]          | Valtrompia           | Hospital and community records          | 6                           | 2.0 (0.9, 3.8)                                                          |
|               | Norway  | Nossent [19]                       | North                | Hospital records                        | 83                          | 2.9 (2.4, 3.3) <sup>a</sup>                                             |
|               |         | Eilertsen <i>et al.</i> [20]       | North                | Hospital records                        | 58                          | 3.0 (2.0, 4.0)                                                          |
|               |         | Lerang <i>et al.</i> [21]          | Oslo                 | Hospital records                        | 116                         | 3.0 (2.4, 3.5)                                                          |
|               | Spain   | López <i>et al.</i> [22]           | Asturias             | Hospital records                        | 116                         | 2.2 (1.8, 2.5)                                                          |
|               |         | Gómez <i>et al.</i> [23]           | Asturias             | Hospital records                        | I                           | 1.9 (1.1, 2.7)                                                          |
|               |         | Alonso <i>et al.</i> [24]          | Lugo                 | Hospital records                        | 150                         | 3.6 (3.0, 4.2) <sup>a</sup>                                             |
|               | Sweden  | Leonhardt [7]                      | Malmö                | Hospital records                        | 16                          | 1.0 <sup>a</sup>                                                        |
|               |         | Eyrich <i>et al.</i> [25]          | Halmstad             | Hospital records                        | 41                          | 1.8 [1957, 1964]                                                        |
|               |         |                                    |                      |                                         |                             | 3.0 [1964, 1971]                                                        |
|               |         | Jonsson <i>et al.</i> [26]         | Lund and Orup        | Hospital and community records          | 39                          | 4.0 (1.6, 6.4) <sup>a</sup>                                             |
|               |         | Ståhl-Hallengren <i>et al.</i> [6] | Lund and Orup        | Hospital and community records          | 41                          | 4.8                                                                     |
|               |         | Ingvarsson <i>et al.</i> [27]      | Lund and Orup        | Hospital and community records          | 55                          | 2.8 (1.4, 4.2)                                                          |
|               | N       | Hopkinson <i>et al.</i> [28]       | Nottingham           | Hospital records                        | 23                          | 4.0 (2.3, 5.6) <sup>a</sup>                                             |
|               |         | Johnson <i>et al.</i> [29]         | Birmingham           | Hospital records                        | 33                          | 3.8 (2.5, 5.1)                                                          |
|               |         | Nightingale <i>et al.</i> [30]     | Whole UK             | CPRD                                    | 390                         | 3.0 (2.7, 3.3)                                                          |
|               |         | Somers et al. [31]                 | Whole UK             | CPRD                                    | 1638                        | 4.7 (4.5, 4.9) <sup>a</sup>                                             |
|               |         | Rees et al. [1]                    | Whole UK             | CPRD                                    | 2740                        | 4.9 (4.7, 5.1)                                                          |
| North America | Canada  | Bernatsky <i>et al.</i> [32]       | Quebec               | Physician billing database              | 219                         | 3.0 (2.6, 3.4)                                                          |
|               |         |                                    |                      | Hospitalization database                |                             | 2.8 (2.6, 3.0)                                                          |
|               | NSA     | Siegel <i>et al.</i> [33]          | New York and Alabama | Hospital records                        | New York: 98                | 1.9                                                                     |
|               |         |                                    |                      |                                         | Alabama: 63                 | 1.0                                                                     |
|               |         | Fessel [34]                        | San Francisco        | Hospital records                        | 74                          | 7.6                                                                     |
|               |         | Hochberg [35]                      | Baltimore            | Hospital records                        | 302                         | 4.6 <sup>a</sup>                                                        |
|               |         | Michet <i>et al.</i> [36]          | Minnesota            | Hospital records and death certificates | 25                          | 1.8 (1.1, 2.5) <sup>a</sup>                                             |
|               |         | McCarty et al. [37]                | Pennsylvania         | Community and hospital records          | 191                         | 2.4 (2.1, 2.8) <sup>a</sup>                                             |
|               |         |                                    |                      |                                         |                             | (continued)                                                             |

| Continent                      | Country        | References                                                                  | Region                 | Case-finding method                     | Number of<br>incident cases | Incidence per 100 000<br>person-years (95% Cl)<br>[study year] |
|--------------------------------|----------------|-----------------------------------------------------------------------------|------------------------|-----------------------------------------|-----------------------------|----------------------------------------------------------------|
|                                |                | Uramoto <i>et al.</i> [38]<br>Nalewav <i>et al.</i> [39]                    | Minnesota<br>Wisconsin | Hospital records<br>Medical records     | 48<br>44                    | 5.6 (3.9, 7.2) <sup>a</sup><br>5.1 (3.6, 6.6) <sup>a</sup>     |
|                                |                | Feldman <i>et al.</i> [8]                                                   | Whole US               | Medicaid database                       | 3490                        | 23.2 (22.4, 24.0)                                              |
|                                |                | Furst <i>et al.</i> [40]                                                    | Whole US               | Medical claims database                 | 1557                        | 7.2 (6.8, 7.7) <sup>a</sup>                                    |
|                                |                | Lim <i>et al.</i> [41]                                                      | Georgia                | Georgia Lupus registry                  | 267                         | 5.6 (5.0, 6.3) <sup>a</sup>                                    |
|                                |                | Somers <i>et al.</i> [42]                                                   | Michigan               | Medical records                         | 399                         | 5.5 (5.0, 6.1) <sup>a</sup>                                    |
|                                |                | Jarukitsopa <i>et al.</i> [43]                                              | Minnesota              | Rochester epidemiology project database | 45                          | 2.9 (2.0, 3.7)                                                 |
| Central America                | Caribbean      | Nossent [44]                                                                | Curaçao                | Medical records                         | 68                          | 4.6 (0.4, 8.8)                                                 |
|                                |                | Deligny et al. [45]                                                         | Martinique             | Medical records                         | 180                         | 4.7 (2.5, 6.9)                                                 |
|                                |                | Flower <i>et al.</i> [46]                                                   | Barbados               | National hospital-based SLE registry    | 183                         | 6.3 (5.4, 7.3) <sup>a</sup>                                    |
| South America                  | Argentina      | Scolnik [47]                                                                | Buenos Aires           | Private medical care database           | 68                          | 6.3 (4.9, 7.7)                                                 |
|                                | Brazil         | Pereira Vilar <i>et al.</i> [48]                                            | Natal city             | Hospital records                        | 43                          | 8.7 (6.3, 11.7)                                                |
|                                |                | Nakashima <i>et al.</i> [49]                                                | Cascavel               | Medical records                         | 14                          | 4.8                                                            |
| Africa                         | Zimbabwe       | Taylor <i>et al.</i> [9]                                                    | Bulawayo and Harare    | Hospital records                        | 22                          | 0.3                                                            |
| Asia                           | China          | Mok <i>et al.</i> [50]                                                      | Hong Kong              | University hospital database            | I                           | 3.1                                                            |
|                                | Kazakhstan     | Nasonov <i>et al.</i> [10]                                                  | Semey                  | Hospital records                        | 4                           | 1.3 (0.4, 3.4) <sup>a</sup>                                    |
|                                | Russia         | Nasonov <i>et al.</i> [10]                                                  | Kursk and Yaroslavl    | Hospital records                        | 12                          | 1.2 (0.6, 2.1) <sup>a</sup>                                    |
|                                | Ukraine        | Nasonov <i>et al.</i> [10]                                                  | Vinnitsa               | Hospital records                        | -                           | 0.3 (0.0, 1.5) <sup>a</sup>                                    |
|                                | South Korea    | Shim <i>et al.</i> [51]                                                     | National               | National Health Insurance database      | 1398                        | 2.8 (2.7–2.9) <sup>a</sup>                                     |
|                                | Taiwan         | Chiu <i>et al.</i> [52]                                                     | National               | National Health Insurance database      | 12 789                      | 8.1                                                            |
|                                |                | Kang e <i>t al.</i> [53]                                                    | National               | National Health Insurance database      | 758                         | 3.3                                                            |
|                                |                | Yu <i>et al.</i> [54]                                                       | National               | National Health Insurance database      | 671                         | 8.4 (7.7, 9.0)                                                 |
|                                |                | Yeh <i>et al.</i> [55]                                                      | National               | Catastrophic illness database           | 6675                        | 4.9                                                            |
|                                |                | See <i>et al.</i> [56]                                                      | National               | National Health Insurance database      | 358                         | 7.2 (6.5, 8.0)                                                 |
| Australasia                    | Australia      | Anstey <i>et al.</i> [57]                                                   | Northern Territory     | Hospital records                        | 13                          | 11                                                             |
| <sup>a</sup> Age standardized. | CPRD: UK Clini | <sup>a</sup> Age standardized. CPRD: UK Clinical Practice Research Datalink | 'nk.                   |                                         |                             |                                                                |
|                                |                |                                                                             |                        |                                         |                             |                                                                |

TABLE 2 Continued





were highest in Black populations and lowest in Caucasians. Asian and Hispanic ethnic groups were intermediate. For example, in the UK, Hopkinson *et al.* [59] published race-specific incidence figures for Nottingham, with Afro-Caribbeans highest at 31.9/100 000 personyears, Asians 4.1/100 000 person-years and Whites 3.4/ 100 000 person-years. In North America, Native American Indians also had higher incidence rates than the White population. This was demonstrated in the study by Feldman *et al.* [8], where the incidence in native American Indians was 30.0/100 000 person-years (95% CI: 22.5, 39.9), which was similar to that of Black or African Americans [31.2/100 000 person-years (95% CI: 29.6, 32.9)] and significantly higher than for Whites [18.0/ 100000 person-years (95% Cl: 17.0, 19.0)] and Asians [16.7/100000 person-years (95% Cl: 13.9, 20.0)]. In the same study, the incidence in Hispanics was 22.2/100000 person-years (95% Cl: 20.4, 24.2). A study specifically focusing on native American Indians found that three tribes had a particularly high incidence of SLE, specifically the Crow, Arapahoe and Sioux tribes [60].

#### Temporal trend

There were a number of studies that examined the same population at risk over time, allowing us to examine the temporal trend (Fig. 3A). In the UK, Somers *et al.* [31]



Fig. 2 The incidence (A) and prevalence (B) of SLE stratified by age and sex in the UK, USA and Taiwan

showed a small but non-significant increase in the incidence in females over the 10-year period 1990-99, but not with males. However, Rees et al. [1] found a statistically significant decline in incidence from 1999 to 2012 of 1.8% per year. In the County of Funen in Denmark, Voss et al. [5] looked at the time periods 1980-84, 1985-89 and 1990-94. The respective incidence rates were 1.0 (95% CI: 0.6, 1.6), 1.1 (95% CI: 0.7, 1.7) and 2.5 (95% CI: 1.8, 3.3) per 100 000 person-years. Although not linear, there was a significant increase from the first to the last 5-year period. Although this could be a true increase, from 1 January 1993 an additional data source was available, thus increasing the number of cases identified. Alamanos et al. [15], in North-West Greece, showed an increasing trend from 1.41/100000 person-years (95% Cl: 0.99, 1.83) in 1982-86 to 2.19/100000 person-years (95% CI: 1.78, 2.60) in 1997-2001, but this was not statistically significant. Finally, results from the Rochester Epidemiology project in Minnesota were published by

Michet *et al.* [36] for the period 1950–79, when the incidence was 1.8/100 000 person-years (95% CI: 1.1, 2.5), followed by Uramoto *et al.* [38], who published data for 1980–92, when the incidence rate was 5.6/100 000 person-years (95% CI: 3.9, 7.2), and finally, Jarukitsopa *et al.* [43], who examined 1993–2005 and found the incidence rate had declined to 2.9/100 000 person-years (95% CI: 2.0, 3.7).

#### Prevalence

#### Geography

The prevalence of SLE by country is summarized in Table 3 and Fig. 1B. Figure 1B uses the most recent estimates from Table 3. The lowest prevalence was reported in a community study of 847 people in Yarrabah, North Queensland, Australia [61], where no cases were found. The highest prevalence was in a national survey in the USA [62], which reported a prevalence of 241/100 000

| Continent | Country   | References                         | Study period     | Region            | Case-finding method                               | Prevalent<br>cases | Prevalence, per<br>100 000 (95% CI)<br>[year of study] |
|-----------|-----------|------------------------------------|------------------|-------------------|---------------------------------------------------|--------------------|--------------------------------------------------------|
| Europe    | Denmark   | Voss et al. [5]                    | 1 January 1995   | Funen             | Hospital and community                            | 84                 | 22.2 <sup>a</sup>                                      |
|           |           | Laustrup <i>et al.</i> [11]        | 1 January 2003   | Funen             | Hospital and community<br>records                 | 109                | 28.3 (23.3,<br>34.2)                                   |
|           |           | Eaton <i>et al.</i> [63]           | 31 October 2006  | National          | National hospital patient                         | I                  | 48                                                     |
|           |           | Hermansen <i>et al.</i> [12]       | 31 Decmeber 2011 | National          | registry<br>National hospital patient             | 1887               | 45.2 (43.3,                                            |
|           | Finland   | Helve [64]                         | December 1978    | National          | regisury<br>National hospital dis-                | 1427               | 41.4)<br>28                                            |
|           | France    | Arnaud <i>et al.</i> [13]          | 2010             | National          | National Health Insurance                         | 27 369             | 40.8 <sup>a</sup>                                      |
|           | Germany   | Brinks <i>et al.</i> [65]          | 2002             | National          | uatabase<br>National Health Insurance<br>database | 845                | 36.7 (34.3,<br>39.3)                                   |
|           | Greece    | Alamanos <i>et al.</i> [15]        | 31 December 2001 | North-West        | Hospital records                                  | 193                | 38.1 (36.3,<br>39.9 <sup>a</sup>                       |
|           |           | Anagnostopoulos <i>et al.</i> [66] | 2008             | Central           | Postal survey                                     | 2                  | 110 (110, 370)                                         |
|           | Iceland   | Gudmundsson <i>et al.</i> [16]     | 1975-84          | National          | Hospital registers                                | 86                 | 35.9 <sup>a</sup>                                      |
|           | Italy     | Benucci <i>et al.</i> [67]         | June 2002        | Florence          | Community survey                                  | 23                 | 71 (49, 92) <sup>a</sup>                               |
|           |           | Govoni <i>et al.</i> [17]          | 2002             | Ferrara           | Hospital records                                  | 201                | 57.9                                                   |
|           |           | Sardu <i>et al.</i> [68]           | July 2009        | Southern Sardinia | Community records                                 | I                  | 81 (50, 124)                                           |
|           |           | Tsioni <i>et al.</i> [18]          | 31 December 2012 | Valtrompia        | Hospital and community<br>records                 | 44                 | 39.2 (28.5,<br>52.6)                                   |
|           | Lithuania | Dadoniene <i>et al.</i> [69]       | 2004             | Vilnius           | Hospital records and community survey             | 76                 | 16.2 (12.7,<br>20.3)                                   |
|           | Norway    | Nossent [19]                       | 1996             | North             | Hospital records                                  | 89                 | 49.7 (44.3, 55) <sup>a</sup>                           |
|           |           | Eilertsen <i>et al.</i> [20]       | 2007             | North             | Hospital records                                  | 114                | 64.1                                                   |
|           |           | Lerang <i>et al.</i> [21]          | 1 January 2008   | Oslo              | Hospital records                                  | 238                | 52.8 (45.2,<br>58 4)                                   |
|           | Spain     | López et al. [22]                  | 31 December 2002 | Asturias          | Hospital records                                  | 367                | 34.1 (30.6,                                            |
|           |           |                                    |                  |                   |                                                   |                    | 37.6)                                                  |
|           |           | Gómez <i>et al.</i> [23]           | December 2003    | Asturias          | Hospital records                                  | I                  | 31.7 (28.3,<br>35.0)                                   |
|           |           | Alonso <i>et al.</i> [24]          | 31 December 2006 | Lugo              | Hospital records                                  | 150                | 17.5 (12.6,<br>24.1) <sup>a</sup>                      |
|           | Sweden    | Leonhardt [7]                      | 1955<br>1958     | Malmö             | Hospital records                                  | I                  | 2.9                                                    |
|           |           |                                    | 1961             |                   |                                                   |                    | 6.0                                                    |
|           |           | Nived <i>et al.</i> [70]           | 31 December 1982 | Lund and Orup     | Hospital and community<br>records                 | 61                 | 39 (30, 48)                                            |

TABLE 3 Worldwide prevalence of SLE

(continued)

| Continent     | Country | References                         | Study period                         | Region                         | Case-finding method                                  | Prevalent<br>cases | Prevalence, per<br>100 000 (95% CI)<br>[year of study] |
|---------------|---------|------------------------------------|--------------------------------------|--------------------------------|------------------------------------------------------|--------------------|--------------------------------------------------------|
|               |         | Ståhl-Hallengren <i>et al.</i> [6] | 31 December 1986<br>31 December 1981 | Lund and Orup                  | Hospital and community<br>records                    | 121<br>160         | 42<br>68                                               |
|               |         | Simard et al. [71]                 | 1 January 2010                       | National                       | National patient register                            | 7929               | 00<br>(46, 85)                                         |
|               |         | Ingvarsson <i>et al.</i> [27]      | 31 December 2006                     | Lund and Orup                  | Hospital and community<br>records                    | 174                | 65                                                     |
|               | Turkey  | Çakır <i>et al.</i> [72]           | I                                    | Havsa                          | Community survey                                     | 10                 | 57 (46, 70) <sup>a</sup>                               |
|               | UK      | Hochberg [73]                      | 1981–82                              | Whole UK                       | Community medical                                    | 20                 | 6.5                                                    |
|               |         | Samanta <i>et al.</i> [74]         | 1986-89                              | Leicester                      | Hospital records                                     | 50                 | 26.1                                                   |
|               |         | Hopkinson <i>et al.</i> [28]       | 30 April 1990                        | Nottingham                     | Hospital records                                     | 147                | 24.6 (20.6,<br>28.7) <sup>a</sup>                      |
|               |         | Johnson <i>et al.</i> [29]         | 1992                                 | Birmingham                     | Hospital records                                     | 242                | 27.7 (24.2,<br>31.2)                                   |
|               |         | Gourley <i>et al.</i> [75]         | 1 August 1993                        | Northern Ireland               | Hospital records                                     | 408                | 25.4 (22.1,<br>28.7) <sup>a</sup>                      |
|               |         | Nightingale <i>et al.</i> [76]     | 1992–98                              | Whole UK                       | CPRD                                                 | 1538               | 25.0 (23.4,<br>26 7) [1992]                            |
|               |         |                                    |                                      |                                |                                                      |                    | 40.7 (37.6,<br>43.8) [1998]                            |
|               |         | Rees et al. [1]                    | 1999-2012                            | Whole UK                       | CPRD                                                 | 1875               | 65.0 (62.1,<br>67 0) 110001 <sup>8</sup>               |
|               |         |                                    |                                      |                                |                                                      | 4413               | 97.0 (94.2,<br>90.0 (1001.018                          |
| North America | Canada  | Peschken <i>et al.</i> [77]        | 1996                                 | Manitoba                       | Medical records                                      | 257                | 22.1 (13.2,                                            |
|               |         | Bernatsky <i>et al.</i> [32]       | 2003                                 | Quebec                         | Physician billing and hos-<br>nitalization databases | 3825               | 32.4)<br>44.7 (37.4,<br>54 7) <sup>a</sup>             |
|               | NSA     | Siegel <i>et al.</i> [58]          | 1959                                 | New York                       | Hospital records                                     | I                  | 5                                                      |
|               |         | Fessel [34]                        | 1973                                 | San Francisco                  | Hospital records                                     | 64                 | 50.8                                                   |
|               |         | Serdula <i>et al.</i> [78]         | 1975                                 | Oahu, Hawaii                   | Hospital records                                     | 81                 | 15.3 <sup>a</sup>                                      |
|               |         | Michet <i>et al.</i> [36]          | 1 January 1980                       | Minnesota                      | Hospital records                                     | 20                 | 40.0 (23.5,<br>57.5)                                   |
|               |         | Uramoto <i>et al.</i> [38]         | 1 January 1993                       | Minnesota                      | Hospital records                                     | I                  | 122 (97, 217) <sup>a</sup>                             |
|               |         | Maskarinec <i>et al.</i> [79]      | 1989                                 | Hawaii                         |                                                      | 454                | 41.8                                                   |
|               |         | Post <i>et al.</i> [80]            | 1996                                 | California                     | Postal survey                                        | 20                 | 68.2                                                   |
|               |         | Balluz <i>et al.</i> [81]          | 1997                                 | Arizona                        | Hospital and community                               | 20                 | 103 (56, 149)                                          |
|               |         | Ward [62]                          | 1988-94                              | National                       | recoras<br>US National health survev                 | 40                 | 241 (130. 352)                                         |
|               |         | Naleway <i>et al.</i> [39]         | 2001                                 | Wisconsin                      | Medical records                                      | 64                 | 78.5 (59.0,<br>98 0)ª                                  |
|               |         | Chakravarty <i>et al.</i> [82]     | 2000                                 | California and<br>Pennsylvania | Hospitalization databases                            | I                  | California:<br>107.6 (106.1,<br>109.2) <sup>a</sup>    |
|               |         |                                    |                                      |                                |                                                      |                    | (continued)                                            |

**TABLE 3** Continued

TABLE 3 Continued

| so<br>su tina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                            |                                                        |                      | [year of study]                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------|----------------------|-------------------------------------------------------|
| Feldman et al. [8]   Furst et al. [40]   Furst et al. [41]   Somers et al. [42]   Jarukitsopa et al. [43]   Jarukitsopa et al. [43]   Jarukitsopa et al. [43]   Deligny et al. [45]   Molina et al. [83]   Reyes-Llerena et al. [84]   Reyes-Llerena et al. [84]   Rever et al. [46]   Mexico Peláez-Ballestas et al. [85]   n America Argentina   Rever et al. [46]   Mexico Peláez-Ballestas et al. [85]   N America Argentina   Rever et al. [47] Brazil   Rodrigues Senna et al. [86] Venezuela   Venezuela Granados et al. [87]   China Wigley et al. [87] |                                |                                            |                                                        |                      | Pennsylvania:<br>149.5 (146.9,<br>152 2) <sup>a</sup> |
| Furst et al. [40]   Lim et al. [41]   Somers et al. [42]   Jarukitsopa et al. [43]   Jarukitsopa et al. [43]   Jarukitsopa et al. [43]   Deligny et al. [45]   Molina et al. [83]   Reyes-Llerena et al. [84]   Reyes-Llerena et al. [85]   NAmerica Argentina   Scolnik et al. [47]   Brazil Rodrigues Senna et al. [86]   Venezuela Granados et al. [87]   China Wolise st al. [87]   In America Mexico   Peláez-Ballestas et al. [86]   Venezuela Granados et al. [87]   China Wigley et al. [87]                                                            |                                | National                                   | Medicaid database                                      | 34339                | 143.7 (142.2,<br>145.3)                               |
| Lim <i>et al.</i> [41]<br>Somers <i>et al.</i> [42]<br>Jarukitsopa <i>et al.</i> [43]<br>Jarukitsopa <i>et al.</i> [43]<br>Deligny <i>et al.</i> [45]<br>Molina <i>et al.</i> [84]<br>Flower <i>et al.</i> [84]<br>Flower <i>et al.</i> [86]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Mexico Peláez-Ballestas <i>et al.</i> [86]<br>Mexica Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                |                                | National                                   | Medical claims database                                | 15396                | 81.1 (78.5,<br>83.6) [2003]<br>102.9 (100.4,          |
| Somers et al. [42]<br>Jarukitsopa et al. [43]<br>Jarukitsopa et al. [43]<br>Deligny et al. [45]<br>Molina et al. [83]<br>Reyes-Llerena et al. [84]<br>Flower et al. [46]<br>Mexico Peláez-Ballestas et al. [85]<br>Mexico Peláez-Ballestas et al. [85]<br>Brazil Rodrigues Senna et al. [86]<br>Venezuela Granados et al. [86]<br>Venezuela Granados et al. [86]                                                                                                                                                                                                |                                | Georgia                                    | Georgia Lupus registry                                 | 1156                 | 105.5) [2008]<br>73.0 (68.9,<br>77 //a                |
| Jarukitsopa <i>et al.</i> [43]<br>Jarukitsopa <i>et al.</i> [43]<br>Deligny <i>et al.</i> [45]<br>Deligny <i>et al.</i> [45]<br>Molina <i>et al.</i> [83]<br>Reyes-Llerena <i>et al.</i> [84]<br>Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                                 |                                | Michigan                                   | Medical records                                        | 2139                 | 72.8 (70.8,<br>74.0/8                                 |
| ral America Caribbean Nossent [44]<br>Deligny <i>et al.</i> [45]<br>Molina <i>et al.</i> [83]<br>Reyes-Llerena <i>et al.</i> [84]<br>Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>n America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                                                                                                                                         |                                | 2006 Rochester, MN                         | Rochester epidemiology                                 | 72                   | 74.0)<br>53.5 (41.1,<br>65.0)                         |
| Deligny <i>et al.</i> [45]<br>Molina <i>et al.</i> [83]<br>Reyes-Llerena <i>et al.</i> [84]<br>Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                                                                                                                                                                                   |                                | 1990 Curaçao                               | Medical records                                        | 69                   | 47.6 (34.1,                                           |
| Molina <i>et al.</i> [83]<br>Reyes-Llerena <i>et al.</i> [84]<br>Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                                                                                                                                                                                                                 |                                | Martinique                                 | Medical records                                        | 245                  | 01.1)<br>64.2 (56.2,<br>70.0)                         |
| Reyes-Llerena <i>et al.</i> [84]<br>Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [89]                                                                                                                                                                                                                              |                                | Puerto Rico                                | Private health insurance                               | 877                  | 159<br>159                                            |
| Flower <i>et al.</i> [46]<br>Mexico Peláez-Ballestas <i>et al.</i> [85]<br>America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [88]                                                                                                                                                                                                                                                                                                                | /es-Llerena <i>et al.</i> [84] | Havana, Cuba                               | datapase<br>WHO-ILAR COPCORD                           | 2                    | 60 (10, 200)                                          |
| Mexico Peláez-Ballestas <i>et al.</i> [85]<br>n America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [88]<br>Li <i>et al.</i> [89]                                                                                                                                                                                                                                                                                                                  |                                | er 2009 Barbados                           | study<br>National hospital-based<br>SI E rodictary     | 226                  | 84.1 (73.5,<br>05 8)                                  |
| n America Argentina Scolnik <i>et al.</i> [47]<br>Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [88]                                                                                                                                                                                                                                                                                                                                                                                         |                                | Five regions in                            | WHO-ILAR COPCORD                                       | I                    | eo. eo<br>60 (30, 100) <sup>a</sup>                   |
| Brazil Rodrigues Senna <i>et al.</i> [86]<br>Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [88]                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 2009 Buenos Aires                          | study<br>Private medical care<br>database              | 75                   | 58.6 (46.1,<br>73 5)                                  |
| Venezuela Granados <i>et al.</i> [87]<br>China Wigley <i>et al.</i> [88]<br>Li <i>et al.</i> [89]                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | Montes Claros City                         | WHO-ILAR COPCORD                                       | ო                    | 98 (20, 280)                                          |
| China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | Monagos                                    | study<br>WHO-ILAR COPCORD                              | ę                    | 70 (10, 200)                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | jley <i>et al.</i> [88] –      | North (near Beijing)<br>South (near        | study<br>WHO-ILAR COPCORD<br>study                     | North: 3<br>South: 1 | 10<br>20                                              |
| l Ivialaviya <i>et al.</i> [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>al.</i> [90]                |                                            | Community survey<br>Community survey                   | с, с, с, с,          | 30 (0, 60)<br>3.2 (0, 6.86)                           |
| Iran Davarcni er al. [91] September 2005<br>Davatchi <i>et al.</i> [92] September 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | r 2006 Five villages<br>in 2006 in NW Iran | WHO-ILAR COPCORD<br>study<br>WHO-ILAR COPCORD<br>study | v                    | 4u<br>60 (6, 670)                                     |

| Continent   | Country               | References                                              | Study period                       | Region                                   | Case-finding method                                       | Prevalent<br>cases   | Prevalence, per<br>100 000 (95% Cl)<br>[year of study] |
|-------------|-----------------------|---------------------------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------------|----------------------|--------------------------------------------------------|
|             | Kazakhstan            | Nasonov <i>et al.</i> [10]                              | 31 December 2010                   | Semey                                    | Hospital records                                          | 52                   | 17.3 (12.9,<br>22.6) <sup>a</sup>                      |
|             | Malaysia<br>Pakistan  | Wang <i>et al.</i> [93]<br>Farooqi <i>et al.</i> [94]   | 1974–90<br>-                       | Kuala Lumpur<br>North                    | Hospital records<br>WHO-ILAR COPCORD                      | 539<br>1             | 43<br>50                                               |
|             | Russia<br>South Korea | Nasonov <i>et al.</i> [10]<br>Ju <i>et al.</i> [95]     | 31 December 2010<br>2004-06        | Kursk and Yaroslavl<br>National          | study<br>Hospital records<br>National Health Insurance    | 79<br>9000-11000     | 7.7 (6.1, 9.7) <sup>a</sup><br>18.8, 21.7              |
|             |                       | Shim <i>et al.</i> [51]                                 | 2006-10                            | National                                 | uatapase<br>National Health Insurance<br>database         | 10080<br>13316       | 20.6 (20.2,<br>21.0) [2006]<br>26.5 (26.0              |
|             |                       |                                                         |                                    |                                          |                                                           |                      | 27.0) [2010]                                           |
|             | Taiwan                | Chou <i>et al.</i> [96]<br>Chiu <i>et al.</i> [52]      | -<br>2000-07                       | Cu-Tien<br>National                      | Community survey<br>National Health Insurance<br>database | 1<br>15463           | 33<br>42.2 [2000]<br>67.4 [2007]                       |
|             |                       | Kang <i>et al.</i> [53]                                 | 31 December 2005                   | National                                 | National Health Insurance                                 | 15753                | 69.3                                                   |
|             |                       | Yu <i>et al.</i> [54]                                   | 2000                               | National                                 | uatabase<br>National Health Insurance<br>database         | 356                  | 37.0 (10.0,<br>41.0)                                   |
|             |                       | Yeh <i>et al.</i> [55]                                  | 2003<br>2008                       | National                                 | Catastrophic illness<br>database                          | 133488               | 97.5                                                   |
|             |                       | See <i>et al.</i> [56]                                  | 2005                               | National                                 | National Health Insurance<br>database                     | 435                  | 43.5 (39.4,<br>47.6)                                   |
|             | Ukraine               | Nasonov <i>et al.</i> [10]                              | 31 December 2010                   | Vinnitsa                                 | Hospital records                                          | 45                   | 12.2 (8.9,<br>16.4) <sup>a</sup>                       |
| Australasia | Australia             | Anstey <i>et al.</i> [57]<br>Grennan <i>et al.</i> [97] | 1January 1991<br>1993              | Northern Territory.<br>Queensland Sydney | Hospital records<br>Hospital records                      | 22<br>Queensland: 20 | 52<br>89<br>12                                         |
|             |                       | Bossingham [98]                                         | 1 August 1996 to<br>31 August 1998 | Far North<br>Queensland                  | Hospital records                                          | ayuney. a<br>108     | - 3<br>45.3                                            |
|             |                       | Minaur e <i>t al.</i> [61]                              | January 2002                       | Yarrabah, North<br>Oueensland            | WHO-ILAR COPCORD<br>study                                 | 0                    | 0                                                      |
|             | New Zealand           | Meddings <i>et al.</i> [99]                             | I                                  | Dunedin                                  | Hospital records                                          | 16                   | 14.7                                                   |
|             |                       | Hart <i>et al.</i> [100]                                | 1980                               | Auckland                                 | Hospital records                                          | 136                  | 17.6 <sup>a</sup>                                      |

2 ñ 2 Aye start. Diseases. case-finding were local secondary care hospital-based outpatient or discharge registries, National Health Insurance databases or community surveys, such as the World Health Organization-ILAR Community Orientated Program for the Control of Rheumatic Diseases (WHO-ILAR COPCORD).

#### Age and sex

In all studies, prevalence was highest among females, with a female to male ratio ranging between 1.2:1 [86] and 15:1 [46]. As an example, in Birmingham in the UK, Johnson et al. [29] found estimates of 49.6/100 000 (95% CI: 43.2, 56.1) for women compared with 3.6/100000 (95% CI: 2.0, 6.0) for men in a hospital-based study. A further study in Birmingham, UK in 1996 aimed to identify undiagnosed cases of SLE in the community via a postal guestionnaire sent to a random sample of 3500 women aged 18-65 years. This suggested a much greater prevalence in women of 200/100 000 (95% CI: 80, 412) [101] compared with the hospital-based study.

Prevalence curves by age had a similar distribution to that of the incidence data, but with a later peak age. Figure 2B shows the age- and sex-specific prevalence from three papers from selected countries from around the world. Summarizing studies from the UK, the peak age of prevalence was between 45 and 69 years for females and between 40 and 89 years for males [1, 76]. Most worldwide studies confirmed the delayed peak age of incidence in males apart from two studies from Scandinavia, which found a lower peak age in men [21, 70].

#### Ethnicity

Similar to the incidence data, Black ethnic groups had the highest reported prevalence of SLE, White groups the lowest and Asian and Hispanic groups were intermediate for both males and females. As an example, the prevalence in different ethnic groups in the UK is summarized in Table 4.

In addition to the studies in Table 4, a study of women aged 15-64 years in South London estimated the

prevalence of SLE to be 177/100000 (95% CI: 135, 220) in Afro-Caribbean people and 110/100000 (95% CI: 58, 163) in West African people compared with 35/100000 (95% CI: 26, 43) in White European people [103]. Studies from the USA have also confirmed the difference between Black and White populations [8, 33], with intermediate figures for Hispanic, Asian and native North Americans. A study from Hawaii had the greatest ethnic diversity [78]. Here, Chinese and native Hawaiian groups were most prevalent (24.1 and 20.4/100000, respectively) and Whites least prevalent (5.8/100 000; 95% CI not given). In the same study, White people had a significantly older mean age of disease prevalence of 38.1 years, compared with 29.7 years overall.

#### Temporal trend

There appeared to be a trend for increasing prevalence with time (Fig. 3B). In the UK, the crude annual prevalence of SLE reported by Nightingale et al. [76] increased from 25/100 000 (95% CI: 23.4, 26.7) in 1992 to 40.7/100 000 (95% CI: 37.6, 43.8) in 1998. A subsequent study by Rees et al. [1] confirmed this trend and found that prevalence rose annually by 3.1% from 1999 to 2012, which was statistically significant. In Malmö, Sweden the prevalence rose from 2.9/100 000 in 1955 to 6.0/100 000 in 1961 [7] and in Lund and Orup from 39/100 000 (95% CI: 30, 48) on 31 December 1982 [70] to 68/100 000 on 31 December 1991 [6]. The same trend was found in Northern Norway [11, 20] and Minnesota [36, 38].

## Discussion

Prevalence p

Asian 40<sup>a</sup>

64.0<sup>a</sup>

48.8<sup>a</sup>

96.5<sup>a</sup>

Indian: 193.1

There are five main findings from this systematic review: there is worldwide variation in the reported incidence and prevalence of SLE; in all nationalities, there is a female predominance; there is a peak age of incidence, which occurs in middle-aged adults; Black ethnic groups have the highest incidence and prevalence and White ethnic groups have the lowest; and there appears to be an increasing trend

The geograph in the genetic

| easing trend in t<br>ne geographical | he prevalence of S<br>variation could i<br>ix of populations | LE with time.<br>reflect differences |
|--------------------------------------|--------------------------------------------------------------|--------------------------------------|
| revalence per 10                     | 00 000 (95% CI)                                              |                                      |
| Asian                                | White                                                        | Chinese                              |
| l0 <sup>a</sup>                      | 20 <sup>a</sup>                                              | -                                    |
| 64.0 <sup>a</sup>                    | 20.2                                                         | -                                    |
| 8.8 <sup>a</sup>                     | 20.3 <sup>a</sup>                                            | 92.9 <sup>a</sup>                    |
| 96.5 <sup>a</sup>                    | 36.3 <sup>a</sup>                                            | -                                    |
| ndian: 193.1                         | 134.5                                                        | 188.39                               |
| (140.8, 258.4)                       | (128.2, 141.1)                                               |                                      |

#### TABLE 4 The prevalence of SLE in the UK by ethnicity

Region

Leicester

Leicester

National

Nottingham

Birmingham

Black

207.0

197.2

African: 179.8

(125.2, 250.1)

Caribbean: 517.5 (398.5, 660.8)

\_

<sup>a</sup>Age-standardized.

References

Samanta et al. [102]

Hopkinson et al. [59]

Samanta et al. [74]

Johnson et al. [29]

Rees et al. [1]

Fig. 3 Temporal trend for the incidence (A) and prevalence (B) of SLE



is not ver in kceed ilence that it riginal indererican

environmental exposures; for example, countries nearer the equator are exposed to more ultraviolet radiation, which has been hypothesized to be an environmental trigger for SLE [104, 105]. The variation could also be attributable to differences in the epidemiological study methods used, the diagnosis rates of SLE in each country, the diagnostic criteria used, access to health care, access to immunology laboratory tests and differing thresholds for positive results, the decade the study was carried out, whether the rates were age adjusted and, if not age adjusted, the underlying population structures. For example, the incidence of SLE in Zimbabwe was one of the lowest worldwide. This may have been underestimated because the data were collected retrospectively, relied on the attendance of people with SLE at one of the study hospitals during the study period, it was not an age-adjusted rate, and life expectancy is lower in Zimbabwe such that the peak age of onset may exceed the average life expectancy. Likewise, the low prevalence found in Australia may be attributable to the fact that it was a small community survey of Australian Aboriginal people in Yarrabah, North Queensland and was underpowered to detect any SLE cases. The North American estimate of SLE incidence of 23.2/100 000 person-years may be overestimated because it is significantly higher than all the other USA estimates. This may be because it is an unadjusted rate or may reflect methodological differences rather than genetic or environmental differences in the population at risk. This study used the Medicaid database, which may have self-selected people with a chronic disease such as SLE, who may be overrepresented in Medicaid, and hence increased the estimate. It should be emphasized that Fig. 1 used data from different decades and from studies using different case-ascertainment methods so should be interpreted with caution.

In common with other conditions that display autoimmune features, SLE is universally more common in females. This could relate both to possession of the double X chromosome and to differences in oestrogen levels, which modulate immune responses [106, 107]. Hormonal changes have been hypothesized to explain the peak incidence in women in young to middle adulthood compared with childhood and older adulthood. However, this explanation cannot fully explain why the peak in incidence extends into the post-menopausal age group [2] unless there is a longer latency between the rise in oestrogen levels, the triggering of the autoimmune pathway and the development of clinical disease in some women.

Incidence and prevalence peak in middle age. Most worldwide studies confirmed the delayed peak age of prevalence in males. Interestingly, two studies from Scandinavia found a lower peak age in men [21, 70]; however, this could be attributable to the small numbers of males in these studies (24 males in the study by Nived *et al.* [70] and nine males in the study by Lerang *et al.* [21]).

The majority of studies that compared ethnic differences found Black people to have high incidence and prevalence of SLE, White people to have low and Hispanic and Asian people to have intermediate incidence and prevalence of SLE. However, most of these studies were performed in the USA and Europe. Interestingly, the study of Black Africans in Zimbabwe [9] had a low incidence of SLE. As discussed above, this may have been underestimated. Alternatively, it may be that the incidence and prevalence of SLE is higher in Black populations who have emigrated out of Africa because of differences in gene-environment interactions. This is a hypothesis being explored in the Gullah population in South Carolina compared with people from their ancestral origin in Sierra Leone [108, 109]. Further high-quality epidemiological studies in Africa would also help to address this question. This is challenging in a resource-limited system, where health-care systems are constrained, but could be achieved using the approach used by the WHO-ILAR COPCORD [110].

It is not possible directly to compare the change in incidence and prevalence between studies in the same country that have used different study methods or case definitions; for example, in the UK Nightingale *et al.* [76, 30] used a stricter definition of SLE than Somers *et al.* [31] or Rees *et al.* [1]. The majority of those studies that have looked at the same population using the same methods over time have shown an increasing incidence and prevalence, except for the most recent studies from the UK and the USA, which showed a reduction in incidence. These may be true increases in incidence and prevalence over time, for example, because of an increase in risk factors for SLE and improved survival, or they may be artefactual because of improved diagnosis of people with SLE or better case-ascertainment methods in the study design. Owing to increasing globalization, it is also possibly attributable to net immigration of non-White populations into areas that were previously predominantly White. The recent reductions in incidence in the UK and the USA may therefore reflect changes in environmental risk factors, such as reduced smoking or changes in migration patterns, or perhaps suggest that the risk in later generations of migrants regresses towards the country's mean. It is important to study these temporal changes so that future health services can be planned to meet the needs of the populations.

A potential limitation of this study was that, firstly, for completeness, all eligible studies were included regardless of size or quality. There is therefore a risk of bias affecting the cumulative evidence. In general, earlier studies were less rigorous than more recent studies and there was greater funding of studies in more developed countries. Secondly, as discussed, it is difficult to assess trend over time between studies that have used different methodologies. Future work should consider study design to enable exploration of temporal trends.

#### Conclusions

In summary, there is wide geographical variation in the reported incidence and prevalence of SLE. North America had the highest reported incidence and prevalence of SLE, Africa had the lowest incidence and Australia the lowest prevalence. The incidence and prevalence of SLE is higher in females compared with males regardless of age or ethnic origin. The incidence and prevalence are age related, and there is a peak incidence and prevalence for both sex. Males have an older peak age of incidence and prevalence compared with females. In general, people of Black ethnicity have the highest incidence and prevalence of SLE worldwide, followed by Asian and then White ethnic groups. There appears to be a trend of increasing prevalence of SLE with time; the trend for incidence is less clear. Further work to address the lack of epidemiological studies of SLE in Africa, for example using the WHO-ILAR COPCORD approach, may further knowledge underpinning ethnic variation in SLE.

*Funding*: We would like to thank Lupus UK for funding towards this project.

*Disclosure statement*: The authors have declared no conflicts of interest.

#### Supplementary data

Supplementary data are available at *Rheumatology* Online.

#### References

1 Rees F, Doherty M, Grainge MJ *et al*. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Ann Rheum Dis 2016;75(1):136-41.

- 2 Cooper GS, Dooley MA, Treadwell EL *et al*. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis Rheum 1998;41:1714–24.
- 3 Friis R, Sellers T. Epidemiology for Public Health Practice. 4th edn. USA: Jones and Bartlett Publishers, 2009.
- 4 Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006;15:308-18.
- 5 Voss A, Green A, Junker P. Systemic lupus erythematosus in Denmark: clinical and epidemiological characterization of a county-based cohort. Scand J Rheumatol 1998;27:98–105.
- 6 Ståhl-Hallengren C, Jönsen A, Nived O, Sturfelt G. Incidence studies of systemic lupus erythematosus in Southern Sweden: increasing age, decreasing frequency of renal manifestations and good prognosis. J Rheumatol 2000;27:685-91.
- 7 Leonhardt T. Family studies in Systemic Lupus Erythematosus. Acta Med Scand 1964;176 (Suppl 416):1–156.
- 8 Feldman CH, Hiraki LT, Liu J *et al.* Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum 2013;65:753–63.
- 9 Taylor HG, Stein CM. Systemic lupus erythematosus in Zimbabwe. Ann Rheum Dis 1986;45:645–8.
- 10 Nasonov E, Soloviev S, Davidson JE *et al.* The prevalence and incidence of Systemic Lupus Erythematosus (SLE) in selected cities from three Commonwealth of Independent States countries (the Russian Federation, Ukraine and Kazakhstan). Lupus 2014;23:213–9.
- 11 Laustrup H, Voss A, Green A, Junker P. Occurrence of systemic lupus erythematosus in a Danish community: an 8-year prospective study. Scand J Rheumatol 2009;38:128–32.
- 12 Hermansen MLF, Lindhardsen J, Torp-Pedersen C, Faurschou M, Jacobsen S. Incidence of systemic lupus erythematosus and lupus nephritis in Denmark: A nationwide cohort study. J Rheumatol 2016;43:1335–9.
- 13 Arnaud L, Fagot J-P, Paita M, Fagot-Campagna A, Amoura Z. Prevalence and incidence of systemic lupus erythematosus in France: a 2010 nation-wide populationbased study. Autoimmun Rev 2014;13:1082–9.
- 14 Elfving P, Marjoniemi O, Niinisalo H *et al*. Estimating the incidence of connective tissue diseases and vasculitides in a defined population in Northern Savo area in 2010. Rheumatol Int 2016;36:917–24.
- 15 Alamanos Y, Voulgari PV, Siozos C et al. Epidemiology of systemic lupus erythematosus in northwest Greece 1982-2001. J Rheumatol 2003;30:731–5.
- 16 Gudmundsson S, Steinsson K. Systemic lupus erythematosus in Iceland 1975 through 1984. A nationwide epidemiological study in an unselected population. J Rheumatol 1990;17:1162-7.
- 17 Govoni M, Castellino G, Bosi S, Napoli N, Trotta F. Incidence and prevalence of systemic lupus erythematosus in a district of north Italy. Lupus 2006;15:110–3.
- 18 Tsioni V, Andreoli L, Meini A et al. The prevalence and incidence of systemic lupus erythematosus in children and

adults: a population-based study in a mountain community in northern Italy. Clin Exp Rheumatol 2015;33:681-7.

- 19 Nossent HC. Systemic lupus erythematosus in the Arctic region of Norway. J Rheumatol 2001;28:539–46.
- 20 Eilertsen GO, Becker-Merok A, Nossent JC. The influence of the 1997 updated classification criteria for systemic lupus erythematosus: epidemiology, disease presentation, and patient management. J Rheumatol 2009;36:552–9.
- 21 Lerang K, Gilboe I, Garen T, Thelle DS, Gran JT. High incidence and prevalence of systemic lupus erythematosus in Norway. Lupus 2012;21:1362–9.
- 22 López P, Mozo L, Gutiérrez C, Suárez A. Epidemiology of systemic lupus erythematosus in a northern Spanish population: gender and age influence on immunological features. Lupus 2003;12:860–5.
- 23 Gómez J, Suárez A, López P et al. Systemic lupus erythematosus in Asturias, Spain: clinical and serologic features. Medicine 2006; 85:157–68.
- 24 Alonso MD, Llorca J, Martinez-Vazquez F *et al.* Systemic lupus erythematosus in northwestern Spain: a 20-year epidemiologic study. Medicine 2011;90:350-8.
- 25 Eyrich R, Borulf B. Systemic lupus erythematosus. Incidence and manifestations during 14 years in a Swedish province. Acta Med Scand 1974;196:527–35.
- 26 Jonsson H, Nived O, Sturfelt G, Silman A. Estimating the incidence of systemic lupus erythematosus in a defined population using multiple sources of retrieval. Br J Rheumatol 1990;29:185–8.
- 27 Ingvarsson RF, Bengtsson AA, Jönsen A. Variations in the epidemiology of systemic lupus erythematosus in southern Sweden. Lupus 2016;25:772-80.
- 28 Hopkinson ND, Doherty M, Powell RJ. The prevalence and incidence of systemic lupus erythematosus in Nottingham, UK, 1989-1990. Br J Rheumatol 1993;32:110–5.
- 29 Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum 1995;38:551–8. Epub 1995/04/01.
- 30 Nightingale AL, Farmer RD, de Vries CS. Incidence of clinically diagnosed systemic lupus erythematosus 1992-1998 using the UK General Practice Research Database. Pharmacoepidemiol Drug Saf 2006;15:656-61.
- 31 Somers EC, Thomas SL, Smeeth L, Schoonen WM, Hall AJ. Incidence of systemic lupus erythematosus in the United Kingdom, 1990–1999. Arthritis Rheum 2007;57:612–8.
- 32 Bernatsky S, Joseph L, Pineau CA et al. A populationbased assessment of systemic lupus erythematosus incidence and prevalence—results and implications of using administrative data for epidemiological studies. Rheumatology 2007;46:1814–8.
- 33 Siegel M, Holley HL, Lee SL. Epidemiologic studies on systemic lupus erythematosus. Comparative data for New York City and Jefferson County, Alabama, 1956–1965. Arthritis Rheum 1970;13:802–11.
- 34 Fessel WJ. Systemic lupus erythematosus in the community. Incidence, prevalence, outcome, and first symptoms; the high prevalence in black women. Arch Intern Med 1974;134:1027-35.

- 35 Hochberg MC. The incidence of systemic lupus erythematosus in Baltimore, Maryland, 1970–1977. Arthritis Rheum 1985;28:80–6.
- 36 Michet CJ, Jr McKenna CH, Elveback LR. Epidemiology of systemic lupus erythematosus and other connective tissue diseases in Rochester, Minnesota, 1950 through 1979. Mayo Clinic Proc 1985;60:105–13.
- 37 McCarty DJ, Manzi S, Medsger TA Jr et al. Incidence of systemic lupus erythematosus: race and gender differences. Arthritis Rheum 1995;38:1260–70.
- 38 Uramoto KM, Michet CJ Jr, Thumboo J *et al*. Trends in the incidence and mortality of systemic lupus erythematosus, 1950–1992. Arthritis Rheum 1999;42:46–50.
- 39 Naleway A, Davis ME, Greenlee RT, Wilson DA, McCarty DJ. Epidemiology of systemic lupus erythematosus in rural Wisconsin. Lupus 2005;14:862–6.
- 40 Furst DE, Clarke AE, Fernandes AW *et al.* Incidence and prevalence of adult systemic lupus erythematosus in a large US managed-care population. Lupus 2013;22:99–105.
- 41 Lim SS, Bayakly AR, Helmick CG *et al*. The incidence and prevalence of systemic lupus erythematosus, 2002–2004: the Georgia Lupus Registry. Arthritis Rheum 2014;66:357–68.
- 42 Somers EC, Marder W, Cagnoli P *et al*. Population-based incidence and prevalence of systemic lupus erythematosus: the Michigan Lupus Epidemiology and Surveillance Program. Arthritis Rheum 2014;66:369–78.
- 43 Jarukitsopa S, Hoganson DD, Crowson CS et al. Epidemiology of systemic lupus erythematosus and cutaneous lupus in a predominantly white population in the United States. Arthritis Care Res 2015;67:739–890.
- 44 Nossent JC. Systemic lupus erythematosus on the Caribbean island of Curaçao: an epidemiological investigation. Ann Rheum Dis 1992;51:1197-201.
- 45 Deligny C, Thomas L, Dubreuil F *et al.* Systemic lupus erythematosus in Martinique, French West Indies: an epidemiology-based study. Rev Med Intern 2002;23:21–9. Lupus systemique en Martinique: Enquete epidemiologique.
- 46 Flower C, Hennis AJ, Hambleton IR *et al.* Systemic lupus erythematosus in an African Caribbean population: incidence, clinical manifestations, and survival in the Barbados National Lupus Registry. Arthritis Care Res 2012;64:1151–8.
- 47 Scolnik M, Marin J, Valeiras SM *et al*. Incidence and prevalence of lupus in Buenos Aires, Argentina: a 11-year health management organisation-based study. Lupus Sci Med 2014;1: e000021.
- 48 Pereira Vilar MJ, Sato EI. Estimating the incidence of systemic lupus erythematosus in a tropical region (Natal, Brazil). Lupus 2002;11:528–32.
- 49 Nakashima CA, Galhardo AP, Silva JF *et al.* Incidence and clinical-laboratory aspects of systemic lupus erythematosus in a Southern Brazilian city. Rev Bras Reumatol 2011;51:231–9.
- 50 Mok CC, To CH, Ho LY, Yu KL. Incidence and mortality of systemic lupus erythematosus in a southern Chinese population, 2000–2006. J Rheumatol 2008;35:1978–82.

- 51 Shim J-S, Sung Y-K, Joo Y, Lee H-S, Bae S-C. Prevalence and incidence of systemic lupus erythematosus in South Korea. Rheumatol Int 2014;34:909–17.
- 52 Chiu YM, Lai CH. Nationwide population-based epidemiologic study of systemic lupus erythematosus in Taiwan. Lupus 2010;19:1250–5.
- 53 Kang SC, Hwang SJ, Chang YS, Chou CT, Tsai CY. Characteristics of comorbidities and costs among patients who died from systemic lupus erythematosus in Taiwan. Arch Med Sci 2012;8:690-6.
- 54 Yu KH, See LC, Kuo CF, Chou IJ, Chou MJ. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res 2013;65:244-50.
- 55 Yeh KW, Yu CH, Chan PC, Horng JT, Huang JL. Burden of systemic lupus erythematosus in Taiwan: a population-based survey. Rheumatol Int 2013;33:1805–11.
- 56 See LC, Kuo CF, Chou IJ, Chiou MJ, Yu KH. Sex- and age-specific incidence of autoimmune rheumatic diseases in the Chinese population: a Taiwan population-based study. Semin Arthritis Rheum 2013;43:381-6.
- 57 Anstey NM, Bastian I, Dunckley H, Currie BJ. Systemic lupus erythematosus in Australian Aborigines: high prevalence, morbidity and mortality. Aust NZ J Med 1993;23:646–51.
- 58 Siegel M, Reilly EB, Lee SL, Fuerst HT, Seelenfreund M. Epidemiology of systemic lupus erythematosus: time trend and racial differences. Am J Public Health Nations Health 1964;54:33–43.
- 59 Hopkinson ND, Doherty M, Powell RJ. Clinical features and race-specific incidence/prevalence rates of systemic lupus erythematosus in a geographically complete cohort of patients. Ann Rheum Dis 1994;53:675–80.
- 60 Morton RO, Gershwin ME, Brady C, Steinberg AD. The incidence of systemic lupus erythematosus in North American Indians. J Rheumatol 1976;3:186–90.
- 61 Minaur N, Sawyers S, Parker J, Darmawan J. Rheumatic disease in an Australian Aboriginal community in North Queensland, Australia. A WHO-ILAR COPCORD survey. J Rheumatol 2004;31:965–72.
- 62 Ward MM. Prevalence of physician-diagnosed systemic lupus erythematosus in the United States: results from the Third National Health and Nutrition Examination Survey. J Womens Health 2004;13:713–8.
- 63 Eaton WW, Pedersen MG, Atladóttir HO et al. The prevalence of 30 ICD-10 autoimmune diseases in Denmark. Immunol Res 2010;47:228-31.
- 64 Helve T. Prevalence and mortality rates of systemic lupus erythematosus and causes of death in SLE patients in Finland. Scand J Rheumatol 1985;14:43-6.
- 65 Brinks R, Fischer-Betz R, Sander O *et al.* Age-specific prevalence of diagnosed systemic lupus erythematosus in Germany 2002 and projection to 2030. Lupus 2014;23:1407–11.
- 66 Anagnostopoulos I, Zinzaras E, Alexiou I *et al*. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskelet Disord 2010;11:98.
- 67 Benucci M, Del Rosso A, Li Gobbi F *et al*. Systemic lupus erythematosus (SLE) in Italy: an Italian prevalence study

based on a two-step strategy in an area of Florence (Scandicci-Le Signe). Med Sci Monit 2005;11:CR420-25.

- 68 Sardu C, Cocco E, Mereu A *et al*. Population based study of 12 autoimmune diseases in Sardinia, Italy: prevalence and comorbidity. PLoS ONE 2012;7:e32487.
- 69 Dadoniene J, Adomaviciute D, Rugiene R, Luksiene A, Venalis A. The prevalence of systemic lupus erythematosus in Lithuania: the lowest rate in Northern Europe. Lupus 2006;15:544–6.
- 70 Nived O, Sturfelt G, Wollheim F. Systemic lupus erythematosus in an adult population in southern Sweden: incidence, prevalence and validity of ARA revised classification criteria. Rheumatology 1985;24:147–54.
- 71 Simard JF, Sjöwall C, Rönnblom L, Jönsen A, Svenungsson E. Systemic lupus erythematosus prevalence in Sweden in 2010: what do national registers say? Arthritis Care Res 2014;66:1710-7.
- 72 Çakır N, Pamuk ÖN, Derviş E *et al*. The prevalences of some rheumatic diseases in western Turkey: Havsa study. Rheumatol Int 2012;32:895–908.
- 73 Hochberg MC. Prevalence of systemic lupus erythematosus in England and Wales, 1981–2. Ann Rheum Dis 1987;46:664–6.
- 74 Samanta A, Roy S, Feehally J, Symmons DP. The prevalence of diagnosed systemic lupus erythematosus in whites and Indian Asian immigrants in Leicester city, UK. Br J Rheumatol 1992;31:679–82.
- 75 Gourley IS, Patterson CC, Bell AL. The prevalence of systemic lupus erythematosus in Northern Ireland. Lupus 1997;6:399-403.
- 76 Nightingale AL, Farmer RD, de Vries CS. Systemic lupus erythematosus prevalence in the UK: methodological issues when using the General Practice Research Database to estimate frequency of chronic relapsingremitting disease. Pharmacoepidemiol Drug Saf 2007;16:144–51.
- 77 Peschken CA, Esdaile JM. Systemic lupus erythematosus in North American Indians: a population based study. J Rheumatol 2000;27:1884–91.
- 78 Serdula MK, Rhoads GG. Frequency of systemic lupus erythematosus in different ethnic groups in Hawaii. Arthritis Rheum 1979;22:328–33.
- 79 Maskarinec G, Katz AR. Prevalence of systemic lupus erythematosus in Hawaii: is there a difference between ethnic groups? Hawaii Med J 1995;54:406-9.
- 80 Post S, Wallace DJ. A prevalence survey of lupus in Moorpark, California is there any evidence for a lupus cluster? J Clin Rheumatol 1998;4:137-40.
- 81 Balluz L, Philen R, Ortega L *et al.* Investigation of systemic lupus erythematosus in Nogales, Arizona. Am J Epidemiol 2001;154:1029–36.
- 82 Chakravarty EF, Bush TM, Manzi S, Clarke AE, Ward MM. Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data. Arthritis Rheum 2007;56:2092-4.
- 83 Molina MJ, Mayor AM, Franco AE et al. Prevalence of systemic lupus erythematosus and associated

comorbidities in Puerto Rico. J Clin Rheumatol 2007;13:202-4.

- 84 Reyes-Llerena GA, Guibert-Toledano M, Penedo-Coello A et al. Community-based study to estimate prevalence and burden of illness of rheumatic diseases in Cuba: a COPCORD study. J Clin Rheumatol 2009;15:51–5.
- 85 Peláez-Ballestas I, Sanin LH, Moreno-Montoya J et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol 2011;38(Suppl 86):3–6.
- 86 Rodrigues Senna E, De Barros ALP, Silva EO et al. Prevalence of rheumatic diseases in Brazil: a study using the COPCORD approach. J Rheumatol 2004;31 (Suppl 3):594–7.
- 87 Granados Y, Cedeno L, Rosillo C et al. Prevalence of musculoskeletal disorders and rheumatic diseases in an urban community in Monagas State, Venezuela: a COPCORD study. Clin Rheumatol 2015;34:871–7.
- 88 Wigley RD, Zhang NZ, Zeng QY *et al*. Rheumatic diseases in China: ILAR-China study comparing the prevalence of rheumatic symptoms in northern and southern rural populations. J Rheumatol 1994;21:1484–90.
- 89 Li R, Sun J, Ren LM *et al.* Epidemiology of eight common rheumatic diseases in China: a large-scale cross-sectional survey in Beijing. Rheumatology 2012;51:721–9.
- 90 Malaviya AN, Singh RR, Singh YN, Kapoor SK, Kumar A. Prevalence of systemic lupus erythematosus in India. Lupus 1993;2:115–8.
- 91 Davatchi F, Jamshidi AR, Banihashemi AT *et al*. WHO-ILAR COPCORD study (stage 1, urban study) in Iran. J Rheumatol 2008;35:1384-90.
- 92 Davatchi F, Tehrani Banihashemi A, Gholami J *et al*. The prevalence of musculoskeletal complaints in a rural area in Iran: a WHO-ILAR COPCORD study (stage 1, rural study) in Iran. Clin Rheumatol 2009;28:1267–74.
- 93 Wang F, Wang CL, Tan CT, Manivasagar M. Systemic lupus erythematosus in Malaysia: a study of 539 patients and comparison of prevalence and disease expression in different racial and gender groups. Lupus 1997;6:248–53.
- 94 Farooqi A, Gibson T. Prevalence of the major rheumatic disorders in the adult population of north Pakistan. Br J Rheumatol 1998;37:491–5.
- 95 Ju JH, Yoon SH, Kang KY *et al.* Prevalence of systemic lupus erythematosus in South Korea: an administrative database study. J Epidemiol 2014;24:295–303.
- 96 Chou CT, Pei L, Chang DM *et al.* Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. J Rheumatol 1994;21:302–6.
- 97 Grennan DM, Bossingham D. Systemic lupus erythematosus (SLE): different prevalences in different populations of Australian aboriginals. Aust NZ J Med 1995;25:182–3.
- 98 Bossingham D. Systemic lupus erythematosus in the far north of Queensland. Lupus 2003;12:327-31.
- 99 Meddings J, Grennan DM. The prevalence of systemic lupus erythematosus (SLE) in Dunedin. N Z Med J 1980;91:205-6.

- 100 Hart HH, Grigor RR, Caughey DE. Ethnic difference in the prevalence of systemic lupus erythematosus. Ann Rheum Dis 1983;42:529–32.
- 101 Johnson AE, Gordon C, Hobbs FD, Bacon PA. Undiagnosed systemic lupus erythematosus in the community. Lancet 1996;347:367-9. Epub 1996/02/10.
- 102 Samanta A, Feehally J, Roy S *et al.* High prevalence of systemic disease and mortality in Asian subjects with systemic lupus erythematosus. Ann Rheum Dis 1991;50:490–2.
- 103 Molokhia M, McKeigue PM, Cuadrado M, Hughes G. Systemic lupus erythematosus in migrants from west Africa compared with Afro-Caribbean people in the UK. Lancet 2001;357:1414-5.
- 104 Lehmann P, Hölzle E, Kind P, Goerz G, Plewig G. Experimental reproduction of skin lesions in lupus erythematosus by UVA and UVB radiation. J Am Acad Dermatol 1990;22(2 Pt 1):181–7.
- 105 Grant WB. Solar UV-B radiation is linked to the geographic variation of mortality from

systemic lupus erythematosus in the USA. Lupus 2004;13:281–2.

- 106 Strickland FM, Hewagama A, Lu Q *et al*. Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J Autoimmun 2012;38:J135-43.
- 107 Pan H-F, Li W-X, Yuan H et al. Susceptibility to systemic lupus erythematosus may be related to gene dosage effect of the X chromosome. Med Hypotheses 2009;72:104–5.
- 108 Kamen DL, Barron M, Parker TM *et al*. Autoantibody prevalence and lupus characteristics in a unique African American population. Arthritis Rheum 2008;58:1237-47.
- 109 Gilkeson G, James J, Kamen D *et al*. The United States to Africa lupus prevalence gradient revisited. Lupus 2011;20:1095–103.
- 110 Community Oriented Program for Control of Rheumatic Diseases (COPCORD). http://copcord.org/index.asp (September 2016, date last accessed).